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Abstract
An exact nonlinear solution is found for long-time behaviour of spontaneously formed phase space clumps/holes in
dissipative plasmas with a population of energetic particles. This solution represents a Bernstein–Greene–Kruskal
mode with slowly varying shape and velocity. It describes a continuous transformation of a plasma eigenmode
excited just above the instability threshold into an energetic particle mode with a significantly different frequency.
An electrostatic bump-on-tail instability is chosen to illustrate the analysis. However, generality of the resonant
particle dynamics makes the described approach applicable to other resonance-dominated instabilities, including
rapid frequency-sweeping events for Alfvénic modes in tokamaks.

PACS numbers: 52.35.−g, 52.55.−s

1. Introduction

The near-threshold regimes of wave excitation by energetic
particles reveal a rich family of nonlinear scenarios ranging
from benign mode saturation to spontaneous formation of
nonlinear coherent structures (phase space holes and clumps)
with time-dependent frequencies [1–3]. In previous work,
the build-up of such structures has been demonstrated, but
their quantitative description was limited to the case of small
frequency deviations from the bulk plasma eigenfrequency
[4, 5]. However, there are multiple experimental observations
of frequency-sweeping events in which the change in frequency
is comparable to the frequency itself [6–9]. The need to
interpret such dramatic phenomena requires a non-perturbative
theoretical formalism, which is the subject of this paper.
The underlying idea is that coherent structures with varying
frequencies represent nonlinear travelling waves in fast-
particle phase space. Given that the energetic particle density
is usually much smaller than the bulk plasma density, one
might expect that these particles should not be able to change
the eigenmode frequency significantly. From this viewpoint,
the strong chirping events look mysterious. The way to resolve
this difficulty is to take into account that, regardless of how
small is the energetic particle density, a coherent group of
these particles can still produce an observable signal with a
frequency different from the bulk plasma eigenfrequency. A
relevant example is a modulated beam in the plasma. The
modulation occurs spontaneously as a result of the initial
instability and resonant particle trapping by the excited wave.
The initial modulation should then match the frequency of

a plasma eigenmode. However, as the coherent structure
evolves due to dissipation, the trapped particles slow down
without losing coherency, and the resulting frequency shifts
considerably from the initial frequency. The corresponding
theoretical building block is then a nonlinear Bernstein–
Greene–Kruskal (BGK) mode [10], rather than a slowly
evolving plasma eigenmode. A rigorous solution of this type is
given in this paper for a simple one-dimensional electrostatic
bump-on-tail model. This model captures the essential features
of trapped resonant particles in more general multidimensional
problems, because particle motion is known to be effectively
one dimensional in the vicinity of an isolated nonlinear
resonance, once expressed in proper action-angle variables
[11]. The presented solution, which is based on adiabatic
description of the trapped particles, suggests an efficient
approach to quantitative modelling of actual experiments.
An analytic nonlinear treatment of resonant particles can be
combined with a linearized description of the bulk plasma to
simplify numerical calculation of the wave fields in realistic
geometry.

2. Bump-on-tail problem

As shown in [4, 5], initiation of phase space holes and clumps
in the near-threshold regime occurs when collisional relaxation
of the resonant particles is negligible. The holes and clumps
develop explosively on a time scale that is comparable to
the inverse bounce frequency ω−1

b of a resonant particle in
the wave field. However, once established, these coherent
structures evolve on significantly longer time scales. Namely,
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Figure 1. Unstable initial bump-on-tail distribution function.

the rate of their frequency sweeping satisfies the condition
dω/dt � ω2

b, which enables adiabatic description of resonant
particles. The slow evolution of the structures is predominantly
due to energy dissipation in the bulk plasma. In the absence
of dissipation, the structures would remain stationary. The
weakness of dissipation allows a two-step theoretical treatment
of the problem. The first step is to construct a single-
parameter set of nonlinear BGK modes that carry resonant
particles. All modes in this set will have the same spatial
period λ (determined by initial conditions) but different phase
velocities. In what follows, the phase velocity (rather than
frequency) will serve as the mode identification parameter.
Because the modes of interest are nonlinear, their Fourier
spectrum generally contains multiple frequencies. In contrast,
the mode phase velocity is unambiguous. An equivalently
convenient frequency parameter would be the frequency of the
dominant spectral component. The second step is to use the
energy balance condition to determine the time evolution of
the mode phase velocity.

To proceed with formalism, we consider a spontaneously
generated electron clump in a simple one-dimensional
electrostatic bump-on-tail problem. The unperturbed electron
population consists of a cold core and a low-density high-
energy tail with a broad velocity distribution f0(u) (shown
schematically in figure 1). The tail provides an instability
drive γL via its positive slope df0(u)/du. The tail electrons
are collisionless whereas the core is slightly dissipative due
to collisions with ions. The ion background is assumed to be
uniform and immobile. The core electron collision frequency
ν provides a linear damping rate γd = ν/2 that determines the
instability threshold (the minimum slope of f0(u) needed to
excite a mode).

Similar to previous analysis [1–3], we consider a near-
threshold case in which only one wavelength (λ) of the
perturbed electric field is initially unstable. The initial
perturbation is a sinusoidal plasma wave, and its phase velocity
is λωp/2π , where ωp is the cold electron plasma frequency.
The instability growth rate is assumed to be much smaller than
ωp, so that the wave evolves slowly on the ωp time scale. As
the wave becomes nonlinear, its amplitude, shape and phase
velocity change, but the spatial periodicity of the wave is still

preserved, with the period being equal to λ. Consequently, we
seek the wave electrostatic potential ϕ in the form

ϕ ≡ − 1

|e|U [x − s(t); t] , (1)

where e is the electron charge, and the electron potential energy
U is a periodic function of its first argument [x − s(t)] and a
slowly varying function of the second argument t . Also, the
wave phase velocity ṡ ≡ ds(t)/dt is a slowly varying function
of time with a sweeping rate s̈. In what follows, we imply
that the wave profile U [x − s(t); t] has zero spatial average,
which is just a matter of convenience without any additional
constraint.

The cold electron response to the perturbed potential is
governed by the linear fluid equations:

∂V

∂t
= − 1

m

∂U

∂x
− νV, (2)

∂δn

∂t
= −n0

∂V

∂x
, (3)

where V is the oscillatory flow velocity of the cold electrons
and n0 and δn are the unperturbed and perturbed densities of
the cold electrons, respectively.

To lowest order (neglecting ν and s̈), these equations
give the following expressions for the perturbed density and
velocity:

δn = n0
U

mṡ2
, (4)

V = U

mṡ
. (5)

The power Q dissipated via weak collisions is due to the work
of the friction force, which gives

Q = νmn0

∫ λ

0
V 2dx = νn0λ

〈
U 2

〉 / (
mṡ2

)
, (6)

where angular brackets denote averaging over the wavelength.
Next, we calculate the perturbed density of fast electrons.

Their motion is governed by a time-dependent Hamiltonian,

H = p2

2m
+ U [x − s(t); t] , (7)

where the first argument of U describes rapid oscillations with
a time scale on the order of ω−1

p . This fast time scale can be
eliminated from the Hamiltonian via canonical transformation
to new coordinate z ≡ x − s with the same momentum p. The
new (wave-frame) Hamiltonian Hw contains only slow time
dependence,

Hw = (p − mṡ)2

2m
+ U [z; t] . (8)

This Hamiltonian preserves adiabatic invariants for co-passing
(+), counter-passing (−) and trapped particles:

J± =
∫ λ

0

(
mṡ ±

√
2m (Hw − U)

)
dz, (9)

Jtrapped =
∮ √

2m (Hw − U) dz. (10)

2
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Figure 2. Evolution of the phase space bucket during sweeping
event. The plot shows the initial separatrix (upper area) and the
shrinked separatrix at half of the initial mode phase velocity (lower
area).

The boundary (separatrix) between the passing and trapped
particles is given by the condition Hw = Umax. The separatrix
moves in phase space (p; z) due to the change in the wave
phase velocity ṡ, as shown in figure 2.

It should be pointed out that all particles inside the
separatrix have nearly the same value of the distribution
function f , because the separatrix is assumed to be narrow
compared with the characteristic width of the unperturbed
distribution function f0. Conservation of the trapped particle
adiabatic invariant means that the phase space density inside
the separatrix is preserved during the motion. It is therefore
allowable to set

ftrapped = f0 (ṡ0) , (11)

where ṡ0 is the initial phase velocity of the wave. As the
separatrix travels in phase space, it enters the area where the
unperturbed ambient phase space density f0(ṡ) is different
from f0(ṡ0). As a result, the distribution function develops
a discontinuity at the separatrix: the trapped particles form a
phase space clump if f0(ṡ0) is greater than f0(ṡ) or a phase
space hole if f0(ṡ0) is smaller than f0(ṡ). Conservation of the
adiabatic invariant and phase space volume prevents passing
particles from becoming trapped unless the potential well
changes its shape.

For this reason, a downward moving separatrix (s̈ < 0)
simply converts counter-passing particles into co-passing
particles. The dominant perturbation of the fast electron
density comes from the narrow protrusion or depletion inside
the separatrix, associated with the difference between f0(ṡ0)

and f0(ṡ), which gives

δnb = [f0 (ṡ0) − f0 (ṡ)] 2
√

2/m

×
{√

[Umax − U (z)] −
〈√

[Umax − U (z)]
〉}

, (12)

where 2
√

2/m
√

[Umax − U(z)] is the velocity interval
occupied by the trapped particles at a given location z. The
term 〈√[Umax − U(z)]〉 in this expression accounts for the
neutralizing contribution of the ion background, which ensures
that 〈δnb〉 = 0.

It is important to point out that equation (12) is applicable
not just to the case of fixed wave profile Ubut also to the case
of slowly evolving U , provided that the time evolution of U

does not lead to trapping of ambient particles into the potential
well. Contrary to trapping, a leak from the well is permissible.
The reason why leaking is easier than trapping to account for
is that the trapped particle distribution function remains flat
in a leaking well, whereas any trapping of ambient particles
would not allow this distribution to remain flat, because of
the discontinuity at the separatrix. However, for equation (12)
to remain valid, the leak has to be sufficiently slow, so that
the escaped particles do not change the ambient distribution
significantly. The leaked particles form a wake behind the
moving separatrix. If the velocity width of the separatrix
decreases by δu during a time interval δt , and the separatrix
shifts down by δṡ during the same time interval, then the
relative correction to the ambient distribution can be roughly
estimated as δf/f0 = δu/δṡ. For the solution that will be
constructed, the ratio of δu/δṡ is on the order of γL/ω � 1,
where γL (defined by equation (22) below) is the fast electron
contribution to the mode growth rate. This ordering can be
verified a posteriori by using the explicit form of the solution.

We now substitute expressions (5) and (12) into the
Poisson equation to obtain a nonlinear wave equation for the
BGK mode

∂2U

∂z2
= −Uω2

p/ṡ
2 − A (ṡ)

×
[√

(Umax − U) −
〈√

(Umax − U)
〉]

, (13)

A (ṡ) ≡ 8πe2 [f0 (ṡ0) − f0 (ṡ)]
√

2/m.

This equation has a first integral:

1

2

(
∂U

∂z

)2

+
ω2

p

ṡ2

(
U 2 − U 2

max

)
2

− 2

3
A (Umax − U)3/2

−A (U − Umax)
〈√

Umax − U
〉
= 0. (14)

The integration constant here is chosen to satisfy the condition
that ∂U/∂z = 0 when U = Umax.

Introduction of a new unknown function

g ≡
√

Umax − U (15)

transforms equation (14) to

2ṡ2

ω2
p

(
∂g

∂z

)2

+

(
g − 2Aṡ2/3ω2

p

)2

2
−

(
Aṡ2/3ω2

p

)2

2

+
Aṡ2

ω2
p

〈g〉 − Umax = 0. (16)

As seen from its definition, the function g must vanish at
the points where U = Umax. The translational invariance
of equation (16) allows us to choose one of these points as
z = 0. Because of the spatial periodicity of the wave, g must
also vanish at z = λ. Next, we differentiate equation (16) with
respect to z and solve the resulting linear differential equations
with the boundary conditions g(0) = g(λ) = 0 to find

g = [
1 − cos

(
ωpz/2ṡ

) − tan
(
ωpλ/4ṡ

)
sin

(
ωpz/2ṡ

)]
× 2Aṡ2/3ω2

p. (17)

3
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Figure 3. Evolution of the wave profile during frequency sweeping.
The plots illustrate equation (20) for three values of the mode phase
velocity ((a)—ṡ = ṡ0; (b)—ṡ = 0.8ṡ0; (c)—ṡ = ṡ0/2). The
unperturbed distribution of fast electrons f0(u) is assumed to have a
constant slope within the sweeping range.

Substitution of this expression into equation (16) yields

Umax = (
2A/3k2 cos α

)2

× 1

2

{
sin2 α + 3 cos2 α

[
1 − sin α

α cos α

]}
, (18)

where

A(k) ≡ 8πe2 [f0 (ṡ0) − f0 (ṡ)]
√

2/m

≡ 2k2ṡ2 1

n0
[f0 (ṡ0) − f0 (ṡ)]

√
2m, (19)

α ≡ kλ/4 = ωpλ/4ṡ.

We finally use equations (15), (17), (18) to obtain

U = mṡ2

2

{
8ṡ [f0 (ṡ0) − f0 (ṡ)]

3n0 cos α

}2 {
1 + 2 cos2 α

2

−3 sin 2α

4α
−

[
cos α − cos

(
α

2z

λ
− α

)]2 }
. (20)

It is noteworthy that this expression applies both to clumps
and holes; the distinction between the two is in the sign of
f0(ṡ0) − f0(ṡ), which does not affect equation (20).

For small deviations of ṡ from ṡ0 (early phase of frequency
sweeping), equation (20) simplifies to

U = mṡ2
0

4

{
32

3π2

γL

ωp

}2

cos

(
2πz

λ

)
, (21)

where

γL ≡ ωp
π

2n0
ṡ2

0
∂f0 (ṡ0)

∂ṡ0
(22)

is the fast electron contribution to the mode growth rate.
Equation (21) reproduces the result of [4], i.e. a sinusoidal

mode with constant amplitude at the beginning of frequency
sweeping. On the other hand, the more general expression (20)
shows that the amplitude and the mode structure change
significantly for larger variations of ṡ. These changes are
illustrated in figure 3. To conclude this section, we note that the
presented derivation involves a tacit assumption that the wave
profile U has no additional maxima within the wavelength.
A straightforward analysis of equation (20) shows that this
assumption is justified as long as ṡ remains greater than ṡ0/2,
which defines the range of sweeping tractable by equation (20).

3. Power balance and sweeping rate

Based on the mode structure given by equation (20), we now
calculate how much power is released by the phase space clump
when the clump velocity ṡ decreases in time. This calculation
relies on the knowledge that the distribution function of passing
particles is smooth around the clump. One can therefore
treat the ambient distribution as uniform and consider a small
displacement of the separatrix (phase space bucket) in the sea
of passing particles with an unperturbed phase space density
f0(ṡ). It is important to keep in mind that a completely uniform
distribution (including the interior of the separatrix) would
not be affected by any variation of the electrostatic potential.
Consequently, the power release is only due to the difference
between f0(ṡ0) and f0(ṡ), the values of the distribution
function inside and outside the separatrix. This difference
represents a narrow flat-top peak within the separatrix. The
height of the peak is f0(ṡ0)−f0(ṡ) and the area involved is the
phase space area within the separatrix. For one wavelength,
λ, this area is equal to the value of Jtrapped at the separatrix
(see equation (10)). The number of particles N in the peak
is then N = (1/m)[f0(ṡ0) − f0(ṡ)]

∮ √
2m(Umax − U)dz and

the kinetic energy of each particle is mṡ2/2, except for an
insignificant small correction associated with the finite size of
the separatrix. Let δṡ be a small reduction in the wave phase
velocity. As the peak shifts together with the separatrix, the
corresponding energy release is

δE = ṡδṡ [f0 (ṡ0) − f0 (ṡ)]
∮ √

2m (Umax − U)dz, (23)

which, together with equations (18), (19) and (20), gives the
following expression for the power release:

P = − [f0 (ṡ0) − f0 (ṡ)] 2mṡ2λ

×
∣∣∣∣8ṡ [f0 (ṡ0) − f0 (ṡ)]

3n0 cos α

∣∣∣∣
[

sin α

α
− cos α

]
dṡ

dt
. (24)

Equation (24) applies directly to the case of externally
controlled sweeping rate, which complements the analysis
performed in [12, 13]. On the other hand, this equation,
together with the power balance condition, governs self-
sustained sweeping in dissipative plasmas.

To balance collisonal dissipation of the BGK mode, the
released power must compensate the power Q absorbed by the
bulk electrons (see equation (6)). This condition determines
the slowing-down rate of the phase space clump, namely

dṡ

dt
= − νṡ

3 |cos α|
α

[sin α − α cos α]

∣∣∣∣4ṡ [f0 (ṡ0) − f0 (ṡ)]

3n0 cos α

∣∣∣∣
2

×
〈[

cos

(
4αz

λ
− 2α

)
+

3 sin 2α

2α

−4 cos α cos

(
2αz

λ
− α

) ]2〉
. (25)

Same as in equation (6), the angular brackets here denote
averaging over the wavelength λ. More explicitly,〈[

cos

(
4αz

λ
− 2α

)
+

3 sin 2α

2α
− 4 cos α cos

(
2αz

λ
− α

)]2
〉

= 1

2
+

11 sin 4α

24α
+ 8 cos2 α −

(
3 sin 2α

2α

)2

− 2 sin 2α

3α
.

(26)

4
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Figure 4. Evolution of the clump velocity for a constant-slope
unperturbed distribution function of the fast electrons f0(u). The
upper curve (a) shows the solution of equation (25). The lower
curve (b) shows the square root dependence (equation (27)) obtained
in [4] for the initial phase of frequency sweeping.

Figure 5. Decay of the phase space clump due to particle leak
through the separatrix (decrease in the separatrix volume during
sweeping event). The solid line shows the value of
Jtrapped(ṡ)/Jtrapped(ṡ0) at the separatrix. The arrow in the plot
indicates that the clump slows down.

Early in time, equation (25) simplifies to

d

dt

(ṡ − ṡ0)
2

ṡ2
0

= ν

3

∣∣∣∣ 16γL

3π2ωp

∣∣∣∣
2

(27)

and reproduces the square root scaling of frequency sweeping
found in [4]. Later in time, the mode moves further away from
the initial linear eigenmode, and its phase velocity ṡ deviates
gradually from the simple square root scaling, as shown in
figure 4.

The phase space area inside the separatrix shrinks during
this process (figure 5), and some of the initially trapped
particles leave the clump as a result. This nonlinear evolution
can be viewed as spontaneous transformation of the initial
plasma wave into an energetic particle mode. It also presents
a plausible scenario for energetic particle modes generated
by Alfvén wave instabilities [14–16], for which nonlinear

modification of the mode structure appears to be essential,
especially when the instability is non-perturbative even in the
linear regime.

4. Generalization

The presented consideration of nonlinear frequency sweeping
in the 1D electrostatic bump-on-tail problem suggests a similar
approach to the frequency-sweeping events in tokamaks.
Experimentally, such events have been observed, for example,
in [6, 9]. They occur in the shear Alfvén frequency
range, and their early stage can be attributed to the
excitation of toroidal Alfvén eigenmodes. However, the
measured frequency quickly moves away from the original
eigenmode frequency, and a plausible underlying mechanism
is spontaneous formation of coherent phase space structures
at the wave–particle resonances. This scenario implies that
the resonances are well separated in phase space, so that the
energetic particle response can be treated as a sum over several
independent resonances. For a linear mode, the resonance
condition has the form

ω − nωϕ

(
Pϕ; Pθ ; Pψ

) − lωθ

(
Pϕ; Pθ ; Pψ

) = 0, (28)

where ω is the mode frequency, ωϕ(Pϕ; Pθ ; Pψ) and
ωθ(Pϕ; Pθ ; Pψ) are the toroidal and poloidal transit
frequencies and n and l are integers. The pairs (Pϕ; ϕ),
(Pθ ; θ ) and (Pψ ; ψ) are the canonical action-angle variables
for the integrable unperturbed motion. The third pair
(Pψ ; ψ) describes fast gyro-motion that does not resonate
with shear Alfvenic perturbations. As a result, the resonance
condition involves only two frequencies. For an isolated
linear resonance, the perturbed particle Hamiltonian is a
sinusoidal function of ωt − nϕ − lθ . Similarly to the bump-
on-tail problem, transition to the nonlinear case generalizes the
Hamiltonian to

H = H0 + U

(∫ t

0
ω (τ) dτ − nϕ − lθ; t

)
, (29)

where the function U (to be determined numerically) is
still periodic (but not necessarily sinusoidal) function of its
first argument. The function U represents a projection of
the perturbed electromagnetic field onto the wave–particle
resonance, which is the dominant part of the total perturbed
Hamiltonian. The projection operator establishes a linear
functional relation between this unknown function and the
perturbed fields. We now note that the quantities Pψ and
P = lPϕ − nPϕ are constants of motion for such Hamiltonian
and that slow evolution of the function Ushould also preserve
an adiabatic invariant for trapped particles. These three
conservation laws establish a simple relationship between the
flat-top trapped particle distributions at any two locations of
the resonance (see figure 6).

The distribution of the ambient passing particles remains
virtually unperturbed. We thereby eliminate the need to solve
the kinetic equation for energetic particles numerically. Any
macroscopic quantity, such as perturbed energetic particle
pressure, now becomes a known functional of the unperturbed
distribution and the ‘potential energy profile’ U . What remains
to be solved is a set of linear MHD equations for bulk

5
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Figure 6. Transport of resonant particles during frequency
sweeping. The shaded areas are snapshots of the moving resonant
region in the momentum space. The shades of gray mark different
values of the particle distribution function. The trapped resonant
particles form a locally flat distribution across the resonance and
preserve the value of their distribution function when the resonance
carries them along the dashed lines.

plasma response with an analytic nonlinear input from the
energetic particles. These equations represent an analogue
of equation (13), and they need to be solved numerically
to determine the wave profile U . After that, the power
balance condition should be used to calculate the frequency-
sweeping rate. An effort is currently underway to develop
a corresponding numerical procedure based on the AEGIS
code [17] that provides the required linear description of the
bulk plasma in the Alfvénic range.

5. Concluding remarks

The presented new solution for a nonlinear travelling wave
with time-dependent phase velocity shows how a weakly
driven eigenmode of the bulk plasma evolves continuously
into a nonlinear energetic particle mode. It is noteworthy that
the spatial structure of the wave changes together with the
phase velocity. This idealized example highlights the essential
physics of the commonly observed frequency-sweeping events
in real systems. The main simplifying element in the analysis
is the adiabatic description of the trapped particles, which
proves to be relevant to the cases of interest. The problem is
particularly simple when the evolving wave does not trap new
particles from the ambient phase space, so that the initially
flat distribution of the trapped particles remains flat in the
process. This auspicious regime is tractable analytically. The
more complicated case of possible trapping into a deepening
potential well seems to require a numerical procedure to keep
track of the particle flux through the separatrix. Yet, such
procedure can still benefit a great deal from the adiabatic
approximation and Liouville theorem, which eliminates the
need to follow the particle dynamics on the fast bounce

frequency time scale. The only part of the problem that
needs full-scale modelling is the initiation of holes and
clumps, because the characteristic time of this process is
comparable to the bounce period. Previous simulations show
that several holes and clumps can emerge simultaneously
from an initially unstable wave. However, these structures
appear to be reasonably well separated to make the presented
consideration of an isolated clump meaningful. An interesting
nonlinear problem of interactions between neighbouring holes
and clumps deserves a separate study. Another relevant
next step is to analyse the effect of resonant particle
collisions on the dynamics and lifetime of holes and clumps.
Finally, specific features of the fast-particle resonances with
Alfvénic modes need to be accounted for in a quantitative
way in order to extend the theoretical model to diagnostic
applications.
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